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The second virial coefficients of homonuclear three-center Lennard-Jones
molecules are calculated with various parameters of the isosceles triangle
connecting the three sites. A special effort is made to establish the reduced Boyle
temperatures 7 and the values of the second virial coefficients at /7T = 0.3 for
the sake of comparison with one- and two-center Lennard-Jones molecules. It is
shown that it is possible to find parameter values of the interaction potential of
one- and two-center Lennard-Jones molecules which give very similar values of
second virial coefficients for 7/T, = 0.3, and the equivalence conditions are
established. These conditions might not only give a basis for a microscopic scaling
of state variables, but also some restrictions for the validity of the group
contribution concept.

{ Keywords: Second virial coefficient; Three-center Lennard-Jones molecules;
Corresponding states)

Der Zweite Virialkoeffizient von Drei-Zentren Lennard-Jones Molekiilen und seine
Beziehung zu dem von Ein-Zentren und Zwei-Zentren Molekiilen

Es wird der zweite Virialkoeffizient homonukiearer Drei-Zentren Lennard-
Jones Molekiile angegeben, und zwar fiir verschiedene Parameter des gleich-
schenkligen Dreiecks, welches die Zentren verbindet. Besonderes Gewicht ist auf
die Ausrechnung der reduzierten Boyle-Temperatur T und auf die Werte des
zweiten Virialkoeffizienten bei T/T, = 0.3 gelegt, welche zum Vergleich mit Ein-
und Zwei-Zentren Lennard-Jones Molekillen herangezogen werden. Es wird
gezeigt, daB fiir Ein- und Zwei-Zentren Lennard-Jones Molekiile Parameter des
Wechselwirkungspotentials gefunden werden konnen, welche sehr dhnliche Werte

* Presented in part at the DFG-Colloquium at Paderborn, 19th April 1982,
and at the 5th Conference on Mixtures of Nonelectrolytes and Intermolecular
Interactions, April 18-22, 1983, at Halle (GDR).
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fur die zweiten Virialkoeffizienten fiir Temperaturen 7/7, > 0.3 ergeben; diese
Aqulvalenzbezmhungen werden angegeben. Diese Bedingungen geben einerseits
einen Hinweis auf die mikroskopische Skalierung der Zustandsvariablen, anderer-
seits deuten sie auf Giiltigkeitsgrenzen des Gruppenbeitrags-Konzepts.

Introduction

In a recent paper, Kohler and Quirke' gave values for the second virial
coefficients of 2-center Lennard-Jones molecules and compared them to
those of an 1-center molecule. Values of second virial coefficients of 2-
center Lennard-Jones molecules have appeared in the meantime also in the
monograph of Maitland etal.’.

The question raised in the paper of Kohler and Quirke' is the
following: For 1-center Lennard-Jones (1 CLJ) molecules, the potential
parameters ¢ and ¢ (minimum and zero of the potential) provide a
microscopic scaling of the state variables as do the critical parameters T,
Do, ©. on a macroscopic basis. E.g., the following relations hold
approximately

kT, je = 1.26, N
p.ofe=0.117, )
v/N40° =3.11, (3)
and we have exactly
kTpgle = 3.418, 4)

where T is the Boyle temperature (zero of the second virial coefficient); &
is the Boltzmann constant and N, Avogadro’s number.

A 2-center Lennard-Jones (2 CLJ) molecule is characterized by the
parameters ¢ and ¢ of the site-site potential and by the distance / between
sites, which is frequently expressed in a reduced way L = //o. How have
the relations (1)«4) to be modified for 2 CLJ molecules as function of the
elongation L?

As Kohler and Quirke noted, an immediate answer is possible for equ.
(4), and it has been given in graphical form (cf. Fig. 1). As far asequ. (1) is
concerned, Kohler and Quirke suggested an empirical relationship

i TC> l+al
Ze I el , 5
(TB>2CLJ <TB ICLJ( ¢ ) )

with a = 0.15. Later, Fischer etal.’ calculated critical points by per-
turbation theory for 1- and 2-center Lennard-Jones molecules. In view of
the shortcomings of perturbation theory around critical densities they
called the calculated values “pseudocritical points”. From their pseudo-
critical points, one can derive the following values for the parameter a:
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0.148 (L =0.3292), 0.166 (L = 0.505), 0.158 (L =0.670), 0.145
(L = 0.793) in good agreement with the postulate of Kokler and Quirke.

Equ. (5) shows, that substitution of an &,c;-value by an “effective”
g1cry would differ whether made for the Boyle temperature (vanishing
density) or the critical temperature (medium density). The same is true if

n “effective” ¢,y ~value is sought for a 2 CLJ molecule. The value for
the “effective” oy would be different if determined for the saturation
density, the critical density or the low density region (second virial
coefficients). The following procedure has been suggested by Kohler and
Quirke to arrive at “effective” o, values for 2 CLJ molecules valid at
low densities:

1. Find the second virial coefficient Bforan 1 CLJat T/Ty = 0.3, and
find B for a 2CLJ again at T/Tp=0.3. The value of (B/o>)ycrp
T/Tg = 0.3 will be the more negative, the bigger the elongation L.

2. The “effective” g, ¢ -value g, ¢ is then obtained from the relation

B B
e _ <_3) T, =03 ©)
07 eff 0" Jacrs

The choice of T/T = 0.3 is arbitrary. It is about the lowest reduced
temperature, up to which the whole curves of virial coefficients for
different L can be made almost identical to B, cr J/o-1 off by a proper choice
of ¢y . At lower reduced temperature, (B/”),cr; is the more negative
than BlCL J/o-1 o the bigger the elongatlon L. A similar statement has been
made recently by Kerl and Héusler®, who could correlate the second virial
coefficients of a number of molecules such that they came on the same
curve between T’z and T but showed a spread of curves at temperatures
below T.

The form of g . as function of L resembles much the graph of kT'g/e
as function of L.

The purpose of the present paper is to extend the findings on 2 CLJ
molecules to 3-center Lennard-Jones molecules (3 CLJ).

Results
Characteristics of 3CLJ

We will restrict ourselves to homonuclear 3 CLJ, and correspondingly
to isosceles triangles. Instead of the angle, we will use the ratio of height 4
to longest side /, 4/, as one parameter, and the reduced length of the
longest side L = [/g, as the other, besides ¢ and ¢ of the LJ site-site
potential. The full pair potential u between two 3 CLJ molecules consists
of nine site-site interactions, which depend on the distance r between
center of mass and the mutual orientation. For a linear 3 CLJ (4/] = 0) the
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mutual orientation is determined by three angles 6,, &,, @, where 8, is the
angle between the axis of molecule 7 and the connecting line of centers of
mass, and ¢ says how much molecule 2 is turned out of plane formed by
the axis of molecule 1 and the connecting line of centers of mass. For a
non-linear 3 CLJ, we need two additional angles i, ¥, to describe all
mutural orientations. One may visualize this as follows: Specify one
molecular axis, ¢.g. the height of the triangle. Then the angles 8, 6,, ¢ are
needed to characterize the mutual orientation of the axes. The angles v/,
and ¥, give then the rotation of the molecules 1 and 2 around the specified
axis.
The second virial coefficient is, therefore, given by

O +1 +1 2=z

B(T)=—2zaN, [ | ||

0 —I —1

O ey H

[ (e —1)dy,dyrd g dcos8, dcosdyrdr
0
()
Calculations

Due to the sixfold integration the straightforward numerical
method—construction of a sufficient number of grid points and appli-
cation of Simpson’s rule—is inappropriate. One value of B would take
hours on a fast computer.

The method followed in this paper is a procedure of sampling the
variables independently at random, with subsequent smoothing of the
density of points along the r-axis.

It might be of interest to compare this method with a method tried in
our most recent work®, where the integration over the angular variables
followed the work of Conroy®, but the integration over r was done by
Simpson’s rule. As Table 1 shows, this last method is more accurate but
takes longer than the random sampling procedure.

Table 1. Comparison of the various calculation methods for second virial coefficients
given by six-dimensional integrals

Random Conroy-Method

Method Grid Points, Sampling for Angles,
Simpson’s Rule Procedure Simpson’s Rule

for Distance

No. of Configurations 2-108 4-10° 8-10°
Statistical Error 0.01% 0.1-0.5%° 0.01%
Systematic Error® 0.1% 0.5-1.5%" 0.1%

* Estimates based on comparisons of integrals of lower dimensionality.
> The biggest errors occur for linear or near-linear molecules with large
elongation.
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The main purpose of this work was to calculate Boyle-temperatures
and second virial coefficients at 7/Tz = 0.3, but one calculation for model
propanc was done over the whole temperature interval. Table 2 sum-
marizes all results.

Fig. 1 shows the variation of the Boyle-temperature as function of the
elongation of the long side L in comparison to the united atom, for which

Te/Tg .

10

08

06

04

02

00 1 L | |
02 0,4 0.6 08
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Fig. 1. The reduced Boyle temperature, T = kT /e, of the 3 CLJ, relative to the
reduced Boyle temperature of the united atom, 7% = 30.761, as function of the
reduced length of the long side of the isosceles triangle, L = //o. The parameters
refer to the relative height of the triangle, 4// = 0.0 means linear 3 CLJ, 4/l = 0.866
means equilateral triangle. The dotted line is the corresponding curve for 2 CLJ

T5=9T%1cry=30.761. The factor 9 arises because of the 9 site-site
interactions. The three curves given are for the parameters 4// = 0 (linear
3CLJ), h/l =0.433, and A/l = 0.866 (equilateral triangle). For com-
parison (T%/T§ unitedatom)2cry 1 also given as a dottted line, from the
results of Kohler and Quirke'. In order to visualize the variation with the
parameter h/l, Fig. 2 shows (T5/T% unitedatom)scrs for fixed elongation
L = 0.6 as function of A/l

84%
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TB*/T;, u.a.

05

04—

03

T 1 1 |

1
0 02 04 06 0.8
— 1/l

Fig. 2. The reduced Boyle temperature of the 3 CLJ at L = 0.6, relative to the
reduced Boyle temperature of the united atom, as function of the relative height of
the triangle, A//
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Fig. 3. “Effective” g-values of 1 CLJ-molecules, which produce at 7/T; = 0.3 the
second virial coefficient of 3 CLJ. The notation of the geometry of the 3 CLJ
corresponds to Fig. 1. The dotted line is again the corresponding curve for 2 CLJ
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Fig. 4. “Effective” g-values of 1 CLJ at L = 0.6 as function of 4//
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Fig. 5. Reduced second virial coefficients of a 3 CLJ-molecule (L = 0.866,

h/l=10.5101) in comparison to the curves for the equivalent 1CLJ

(03/0,ep = 0.64633) and 2 CLJ (L = 0.789, a5/0, . = 0.90537). The curves for T’
> (0.4 Ty are given also on a magnified scale (right ordinate)

Again, following the prescription of Kohler and Quirke [equ. (6)], it is
possible to arrive at “effective” o} -values for 1 CLJ molecules, which
produce at T/Ty = 0.3 exactly the second virial coefficient of the 3 CLJ
molecule and give a good approximation for B(7) between T = Ty and
T = 0.3 Ty. Figs. 3and 4 show such 63¢,//0; grratios for the same states as
Figs. 1 and 2. Fig. 5 compares B (T) of a quite anisotropic 3 CLJ-molecule,
which might serve as model of propane, with that of the equivalent 1 CLJ.
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It is seen that, indeed, the 1 CLJ molecule is a reasonable approximation.
A still better approximation should be an equivalent 2 CLJ molecule. The
question is how to determine the parameter L of the equivalent 2 CLJ
molecule. One would like to choose L in such a way that also other
thermodynamic properties would come out similar. In order to have a
simple prescription we suggest to choose L in such a way that the volumes
of the corresponding hard molecules are the same. The volume of a hard
diatomic can be calculated simply’, that of a hard triatomic is a more
difficult problem, which has been solved by Rowlinson® and Powell’, and
has been treated in a systematic way recently by Lustig'®. The curve for
B (T) for the equivalent 2 CLJ is also shown in Fig. 5.

Discussion

The similarity of the B(T)-curves for 3CLJ-, 1 CLJ- and 2CLJ-
molecules (with properly defined o-values) for 7/Tp > 0.3, where B(T)
values can be determined experimentally with good accuracy, makes it
difficult to assign molecular shape parameters from second virial coeffi-
cients. The situation is quite different at high densities, where, e.g., the
properties along the orthobaric curve depend significantly on molecular
shape®®. On the other hand, the equivalence conditions established here
for 1, 2, and 3CLJ from the point of view of second virial coefficients
might help to arrive at a common microscopic scaling of state variables. It
is noteworthy, that a linear 3 CLJ molecule leads to other scaling
conditions than a 2 CLJ molecule, as can be readily inferred from Figs. 1
and 3.

Another remark might be of interest. In the theory of fluids, especially
mixtures, the idea of group contributions is much discussed. Though this
idea is usually applied only to the interaction in excess over the arithmetic
mean, we might express it as saying that the interaction energy at contact
of a molecule is equal to the sum of interaction energies at contact of its
groups. As the interaction energy at contact is about the site-site
interaction energy at its minimum, and as this parameter is directly related
to the (reduced) Boyle-temperature, we can see under which conditions the
group interaction idea is valid from the point of view of second virial
coefficients. Let us call &; the minimum site-site interactionina 3 CLJ, and
let us ask under which condition this is equivalent to 3¢; = gy of an 1 CLJ.
As the united atom corresponds to ¢; = &;/9, our equivalence demands
that (T%/T%§ unitedatom)3czs = 1/3. Looking at Fig. 3, one can see that this is
true for L = 0.52 for an equilateral triangle, and for L = 0.87 for a linear
3CLJ (which corresponds a reduced group-group distance of 0.435).
Similarly, for a 2CLJ molecule, the condition would be
(T%/ T unitedatom)acrs = 1/2, which holds for L = 0.49. Though these L-
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values are somewhat smaller than for the most recent models of
hydrocarbons (L = 0.67 for ethane as 2CLJ'!, L = 0.866 for propane as
3CLJ® with a h/I = 0.5 ratio intermediate between linear configuration
and equilateral triangle, corresponding to a reduced group-group distance
of 0.61), one might say that they are roughly met by the carbon groups in
organic molecules. But some caution seems to be necessary in applying
group contribution ideas to groups with a very different size to elongation
ratio.

Table 2. Reduced second virial coefficients of 3 CLJ-molecules as functions of T*
=kT/e, L = ljo, and h/]

Bl = 0.0
L T3 T} BJ(N ")
0.05 30.349 0.3 —5.1440
0.6 —1.2433

1.05 0.0809

0.10 29.369 0.3 —35.2854
0.6 —1.2750

1.05 0.0831

0.20 26.212 03 —35.8138
0.6 —1.3952

1.05 0.0912

0.27 23.699 0.3 —6.3249
0.6 —1.5103

1.05 0.0990

0.3292 21.612 0.3 —6.8474
0.6 —1.6244

1.05 0.1061

0.5 16.513 0.3 —8.7645
0.6 —2.0296

1.05 0.1312

0.55 15.328 0.3 —0.4213
0.6 —2.1615

1.05 0.1408

0.60 14.253 0.3 —10.1452
0.6 —2.3072

1.05 0.1474

0.65 13.312 0.3 —10.8905
0.6 —2.4528

1.05 0.1576

0.70 12.472 0.3 —11.6781
0.6 —2.6051

1.05 0.1662

0.75 11.275 0.3 —12.4871
0.6 —2.7610

1.05 0.1759
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h/l[=0.0

L T} /T BI(N 0%
0.80 11.056 0.3 -—13.3056
0.6 —2.9180
1.05 0.1856
0.866 10.269 0.3 —14.4066
0.6 —3.1209
1.05 0.2012
0.05 30.303 0.3 —5.1516
0.6 —1.2451
1.05 0.0804
0.10 29.240 0.3 —5.3006
0.6 —1.2772
1.05 0.0845
0.20 25.720 0.3 —5.8994
0.6 —1.4154
1.05 0.0920
0.27 22.952 0.3 —6.4815
0.6 —1.5463
1.05 0.1013
0.3292 20.670 0.3 —7.0874
0.6 —1.6785
1.05 0.1091
0.50 15.258 0.3 —9.3039
0.6 —2.1478
1.05 0.1395
0.55 14.025 0.3 —10.0697
0.6 —2.3057
1.05 0.1491
0.60 12.932 0.3 —10.8848
0.6 —2.4722
1.05 0.1593
0.65 11.965 0.3 —11.7466
0.6 —2.6458
1.05 0.1702
0.70 11.116 0.3 —12.6440
0.6 —2.8236
1.05 0.1808
0.75 10.369 0.3 —13.5514
0.6 —3.0031
1.05 0.1928
0.793 9.789 0.3 —14.3535

0.6 —3.161
1.05 0.2020
0.80 9.699 0.3 —14.4859
0.6 —3.1865
1.05 0.2038
0.866 8.193 0.3 —15.7688
0.6 —3.4324
1.05 0.2181
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Rl =0.0
L T} /T BN ,0%)
0.05 30.303 0.3 —5.1471
’ 0.6 —1.2429
1.05 0.0819
0.10 29.121 0.3 —35.3212
0.6 —1.2832
1.05 0.0833
0.20 25.413 0.3 —5.9613
0.6 —1.4268
1.05 0.0934
0.27 22.472 0.3 —6.5900
0.6 —1.5709
1.05 0.1021
0.3292 20.088 0.3 —7.2499
0.6 —1.7154
1.05 0.1105
0.5 14.556 0.3 —9.6591
0.6 —2.2267
1.05 0.1431
0.55 13.323 0.3 —10.4835
0.6 —2.3961
1.05 0.1545
0.60 12.240 0.3 —11.3556
0.6 —2.5754
1.05 0.1658
0.65 11.282 0.3 —12.2822
0.6 —2.7625
1.05 0.1762
0.70 10.448 0.3 —13.2336
0.6 —2.9502
1.05 0.1894
0.75 9.701 0.3 —14.2434
0.6 —3.1482
1.05 0.2010
0.80 9.038 0.3 —15.2832
0.6 —3.3492
1.05 0.2141
0.866 8.247 0.3 —16.7620
0.6 —3.6303
1.05 0.2303
0.05 30.266 0.3 —5.1545
0.6 —1.2456
1.05 0.0809
0.10 29.044 0.3 —5.3316
0.6 —1.2854
1.05 0.0839
0.20 25.151 0.3 —6.0016
0.6 —1.4389
1.05 0.0936
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Table 2 (continued)

Wl =0.0
L T} /T BN 40%)
0.27 22.109 0.3 —6.6751
0.6 —1.5893

1.05 0.1033

0.3292 19.666 0.3 —17.3723
0.6 —1.7417

1.05 0.1131

0.50 14.065 0.3 —9.9286
0.6 —2.2840

1.05 0.1478

0.55 12.837 0.3 —10.8038
0.6 —2.4645

1.05 0.1595

0.60 11.758 0.3 —11.7347
0.6 —2.6565

1.05 0.1697

0.65 10.823 0.3 —12.6904
0.6 —2.8472

1.05 0.1834

0.70 9.990 0.3 —13.7178
0.6 —3.0505

1.05 0.1950

0.75 9.251 0.3 —14.7988
0.6 —3.2608

1.05 0.2082

0.80 8.591 0.3 —15.9383
0.6 —3.4784

1.05 0.2215

0.866 7.813 0.3 —17.5549
0.6 —3.7813

1.05 0.2402

0.05 30.239 0.3 —5.1571
0.6 —1.2460

1.05 0.0818

0.10 28.910 0.3 —35.3523
0.6 —1.2909

1.05 0.0837

0.20 24.777 0.3 —6.0721
0.6 —1.4547

1.05 0.0948

0.27 21.580 0.3 —6.8056
0.6 —1.6182

1.05 0.1055

0.3292 19.0438 0.3 —7.5713
0.6 —1.7841

1.05 0.1162

0.5 13.405 0.3 —10.3374
0.6 —2.3696

1.05 0.1536
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kil =0.0
L T} T*/Tp B/(N,40”)
0.55 12.188 03 —11.2874
0.6 —2.5672
1.05 0.1656
0.60 11.136 0.3 —12.2721
0.6 —2.7683
1.05 0.1787
0.65 10.209 0.3 —13.3247
0.6 —2.9792
1.05 0.1901
0.70 9.395 0.3 —14.4414
0.6 —3.1973
1.05 0.2041
0.75 8.669 0.3 —15.6421
0.6 —3.4261
1.05 0.2185
0.80 8.016 0.3 —16.9515
0.6 —3.6731
1.05 0.2321
0.866 7.249 0.17 —70.8849
0.2 —46.2496
0.3 —18.8530
0.4 —10.4187
0.5 —6.3765
0.6 —4.0210
0.7 —2.4852
0.8 —1.4042
0.9 —0.6109
1.05 0.2536
0.05 30.157 0.3 —5.1679
0.6 —1.2484
1.05 0.0817
0.10 28.612 0.3 —5.3945
0.6 —1.3003
1.05 0.0844
0.20 23.878 0.3 —6.2554
0.6 —1.4959
1.05 0.0969
0.27 20.392 0.3 —7.1275
0.6 —1.6893
1.05 0.1098
0.3292 17.721 0.3 —8.041
0.6 —1.8881
1.05 0.1221
0.50 12.107 0.3 —11.2933
0.6 —2.5723
1.05 0.1658
0.55 10.943 0.3 —12.3893
0.6 —2.7980

1.05 0.1796



1260 H. Breitenfelder-Manske and F. Kohler:

Table 2 (continued)

Bl = 0.0
L T3 T/T} B(N46)
0.60 9.950 0.3 —13.5322
0.6 —3.0327
1.05 0.1946
0.65 9.046 0.3 —14.8382
0.6 —3.2775
1.05 0.2093
0.70 8.261 0.3 —16.2619
0.6 —3.5472
1.05 0.2256
0.75 7.570 0.3 —17.8389
0.6 —3.8387
1.05 0.2438
0.80 6.961 0.3 —19.5738
0.6 —4.,1540
1.05 0.2621
0.866 6.272 0.3 —22.0863
0.6 —4.6018
_ 1.05 0.2880
0.05 30.030 0.3 —5.1837
0.6 —1.2515
1.05 0.0826
0.10 28.129 0.3 —5.4655
0.6 —1.3160
1.05 0.0861
0.20 22.599 0.3 —6.5449
0.6 —1.5612
1.05 0.1009
0.27 18.815 0.3 —7.6321
0.6 —1.7983
1.05 0.1172
0.3292 16.077 0.3 —8.7578
0.6 —2.0423
1.05 0.1327
0.50 10.653 0.3 -12.6553
0.6 —2.8488
1.05 0.1841
0.55 9.543 0.3 —14.0745
0.6 —3.1267
1.05 0.2005
0.60 8.591 0.3 —15.6220
0.6 —3.4248
1.05 0.2182
0.65 7.770 0.3 —17.3395
0.6 —3.7462
1.05 0.2390
0.70 7.060 0.3 —19.2603
0.6 —4.0993

1.05 , 0.2583
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hil = 0.0
L T} /T B/(N 40%)
0.75 6.456 0.3 21.2907
0.6 —4.4650
1.05 0.2813
0.80 5.934 0.3 —23.4966
0.6 —4.8482
1.05 0.3039
0.866 5.352 0.3 —26.6979
0.6 53910
1.05 0.3354
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